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ON THE SOLUTION OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS
*
BY MEANS OF NUMERICAL INTEGRATION OPERATORS )
by

A, V, Nesterchuk [Nesterguk]

Considered in [1,2] are several aspects of the solution of differential

equations by means of numericsl integrat’on operators. Considered in the present

paper are new numerical Integration operators and their application to the computer

solution of ordinary linear differential equations. Also examined is the problem

of estimating the total error.

Given a function f£(x) ccatinuous on the segment [0,1]. We divide the

segment {0,1] into n equal parts, h =-§. We introduce the notation

x,=0, x, = ih, f‘=f(x‘), [f‘]=(f°.f‘..‘..fn], i=012...,n

e

X
We shall calculatef f{fjd!, 0 € x € 1from one of the quadrature formulas,

o TN 4 W’h

e.g., by the trapezoidal formula. Then

L R
‘ f(‘)dtzh";—(fo'}"g)=h[fo'fgl";—[: } ’
]

» 1

L] (f({)dtzh'%(fo"}'zfl+’3)=h[fmfp’3!“%‘ 21,
8 !

? e e & ® & A e ¥ o " e £ v o T B8 s » s s e

* Translated from Ukr. ¥at. 2k. [Ukr. Math. J.J, vol, 17, No. &4, pp. 112-119
{1965).
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£ 3 Sf(l)dlzho?(f,+2},+...+2f,l_,+'f,l)=h[f°.f,.....f,,l-'§- K “
" . . ::
. ° 2 :
: -1
& or, in the general case, E
N {(f(l)dl]z[f‘]-hd,, k=0,1,2,...,i; i=0,12,...,n, (1) 3§
) where , Z
wL R N U B
. 01 22...2
oo 2...2
2 i A‘~' 2 .
f‘ % 009 1...2

?  0000...1

L

' Thus, the matrix Al is a difference operator on the right in the trape-

zoidal formula. In what foliows we shall call it the numerical integration oper-

i
ator. Denoting y,::;f(t)df, equality (1) can be rewritten in the form

'!/ﬁ:-"h"JAp £=0,12,....& i=0,12...,n

Here the error can be found on the basis of the equalities
1 . 1
y;'—-’-z-'h(fo'!‘fx)'-ﬁh’f'(ﬁ)' ¢ o‘;; <h,

y,=-;—h(f.+2f;.+f,)—§§-"'f'(%u 0<%, 52, ()
U= g hlio ¥ 2y b ook 2y FE) =R ES 0 <E, Sk,
From {2) it follows that

“y‘l"'i,”.l‘,!<Rp 3) °

nifanirisH e A NI o b i s N v

O ——

., T
sy R R AR

where

MR : 1. :
Ri=Tmr O L oo Bl M max |51 !

The one~-row matrix Rl will be called the error vector. Expression (3)

characterizes the error of the method. Thaz total error is the sum of the method

5 -2-
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error and the computational error. Apropos the total error, the following theorem

holds.,

Theorem 1. If the function £(x), cdefined and continuous on the segment

[0,1], has on this segment a second derivative for which the following condition

is fulfilled:
IF@i<M, o<t<],

X
then in calculating Si(l)dl, 0<x< !, by means of the operator A;, vhen the errors

0
in the calculated values of the function f*(ih) (1 = 0,1,...,n) do not exceed the

2
gquantity liﬂz' » the vector of the total errors R';' has the form

R'-—-x [023 ceet 3 1),
Proof. let £(x) be the exact and f*(x) the calculated values of the

function. The total-error vector for the approximate vector h{f':]Al is deter-

mined in the form of the difference

M
[Sf(l)dl]-—llllim,. k=0,12,...,n %)
o
We calculate the i-th component of vector (4). Taking (2) into account, we get
-l-
2

%h(’o+2’|+-..+2f¢_|+")_]12’h‘r(§)'—h";vn'-...f:l"';" : =

]
g Bl 2yt ook Uy B @ = R U 2
...+2f;_,+i;)-—-;—ht<f,—f9+(2f.-2r>+..

LR ’*‘2(’;...] f'_;)‘*'(f,—f')l— h’f"(ﬁ).
i=012...,n;, Ot Gih

3

| s 1

. )
< TR then, from (5}

By the condition of the theorem |f "
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A
(Di(t)dt qa;;;m,) <—-h g MR “”‘ ——hM—
’ '

Ma® .
-——i-2-(£+l). i=1,2.3.....n. (6)

“ 1 ]
Taking the obvious equality l([('(l)d!}_lg[f,lg‘ =p and (6) into
. £
K o
account, we can write .
. MRS
R,=”i‘2“'10.2.3..-c¢n‘i‘ ‘l.
More a2ccurate will be an operator coastructed by means of second- and
third degree parabolas, WYhen x = h we use the trapszoidal formula; then
ﬁ
ff(0ﬂ~ Lad,+1y. )
When x = 2h, by the Simpson formula we have
¢ b
af FOMt b, + 4], + 1) (®)
and when x = 3h, we have by the "3/8" Simpson formuia
3
5“0 3 b+ 2 30, + 1) ©)
But if x = &h, we apply the "one-third" Simpson rule twice, and when
x = 5h tnis same rule is applied from (! to 2h and the "three-eighths" Simpson
rule from 2h to 5h. As a result, by analogy with (1} we get
N b
L(flf)df]zk!f.m,. k=0,1,2,....i; i=012...,n (10
where .
b
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0 0 6 0 O 0. ..8(9.

The last diagonal element equals eight if n is even and 9 if n is odd.

erxror in this case can be frund on the basis of the equalities

heghl+ =8 E). 03 <h

b= hlUo 44, +B)— HH™R) 0 <, <n

3 3
!!sf-""ﬁ'h(iri‘w:+3f:‘*‘fa7-'§§hsﬂm(ﬁl)' 0<E, <3k,

B =Rty + 4, + 26+ 4y + £ — g U@ + IV,
O<E <,  2<E <h
4o = g A8, + 307, + 17, + 278, + 271, + 91—
— B e + 2™ &,
O <21, 2h<E <5h,

¢ 3 A ¢ & & * > @ e« @& % & & 2+ o s v 1 = 4« & e

Thus, it follows from (11) that

Hy)—aifJ Al <R,

where

R‘ '——“‘_% (Ov i' 8' 2?' !6: 35' 2‘. «e ol.
= ~2g .

M = max (60 @), [ @D,

k=6,l'2..--.i: imo,l,2'~0\9n-

Inzofar as the total errur is concerned, a theorem anzlogous to theoren 1

The

(11)

12)
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Theorem 2. 1If a fuaction £(x), given .nd continuous oo the segmest

———

N

G

£0,1], has on this segment derivactives of up to ard incleding the fourth crder

a and if the conditic.s |6CAFENGM, L™ E)I<M 6 €t <, are fuiffiled, in

O b s N K e

. .
: calculating §f(£’)0'.’ by meaas of the opcrator AZ’ vheu the errors of the cal- !

138 . g
f?‘ B ;
8 i culate ! values of the functior f*(x) in eacrh integratfon step h do not sxceed the 2
. ; —————e ——— et P W S ——— 'é

RS

RGN

R AR

Mk
vi-lge 355, the total-error vect~r R has the form

720 °*
MR
R}= T {0. 2, 10, 30, 20, 40, 30, 50, ... .}.

I

3
#
%
H
H
!

Tae |, oof of th2orem Z is analozous to the prdof of theorem 1, and there-

#‘wp AR

for- ve wifl . 3 /e it here.

Up... rspeated integration by means of numerical operators, the matrices

representing these operators multiply out. In fact, if we calculate i-' &t f‘ F () de
»
3 &

1
then, denotio j‘f{l')dt by §(t), we get frem (1) 4
0

‘o 2) (13) g ':d:

X

[5 m(od:} =RDOA =1 AL

It is easy to see that

b 4
-

b d!j dt...gf(u)dujzh"lf.l AT,

oy
it
ol
g
.
ey

(14)

it should be noted, however, that it is not always expedient to use %

i

formula (14), since the calculations can be made more successfully if the ieft- f?g
hand part of formula (14) is replace¢ by the Cauchy formula: ;5

-
tarae

; LI ™ Ren—t 1 P
\ ! - ¢
| (an, [, fan | b, = g [ 8 —0'102. 1) i
H o ) ) ) ) ¢ §«,

=
i and then formula (1) is applied. ?}:

N

(3
N

Now let us consider the solution of ordinary linear differential equa-

E{C{z‘s«m A

tions with constant ccefficients by means of numerisal iategration operators.
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Now we integrate {21) taking (13) into account and get

Given the differential equatien
af by =il 0<x<l, (16)
where a and b are constants, with the initial conidition
4(0) =y, (an
By aumerical integration of Eq. {16} taking (I) and (17) inte account we get
oy —agii.i..... 3 4 bhiy 4, =hIf] A
or
Gl {a? + 004} = Hif ) 4, 4-ayil, 1., .. 1% i==1.2, (18)

where I is the unit matrix. The matrix al + bhA1 is invertible; since it is

s . . ] a
trisngular and its diagenal elements are different from zero; 2nd when h ¥ - ==
i

(ajj are the diagonal elements of the matrix Aj) det {al + -hA1§ # 0. From (18)
we get

vl = {RILYA +ay L L,..., 1187, (19)
where B = al + bhAi, (i =1,2,), is a matrix which we will call "resolving”.
Equality (19) is the computational formula for finding the solution to the problem
(18)-(17).

Let us now consider the second-order differential equation

af + by +ey=f(x), xei0,1} (20)
O =gy O =g

where a, b, ¢ are constants.

Integrating the first time we get

oy =5+ bly—g) o et = Sf(ndl. 1)

x x
ag’ +bsi+c§gdl=§f(¢)fit+ay;+tyo-

z z 4 x { x
ay &b Syd:—}-c (dl§ydt=§dl§f(f)dv+ S(cy;+bg°)dl+ay°.
H ) 9
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aly,) o+ bh[y)) A, + ch*ly,) A = K ] A +
+agp+ o410, 1,2, .onl b agy Il L. 1), P12
k=0,1,2,...,n. (22)
For the given eguation we call the matrix
B=al +bhA, + A, i=1,2
the "resolving'" matrix.
In view of the fact that the matrix A, is triangular, for its invertibil-
ity it is necessary to choose h such that
a- bha”-«!-c.‘zzaflqeb,
then det B # 0 and formula (22) can be written in the form
[y = 17 A%+ (agg + ) 10, 1,2, ... ml + agy (1, ..., 1]} B, (23)
i=1,2 £=0,1,2,...,n
Formula (23) will be the computational formula for finding the solution to
problem (23). When integrating Eq. (21) it is also possible to use equality (15)
instead of (13). We then get
[yl {al + bRA, + ch* (R —jl A} =
=8k — I, 4 iy + by 10, 1,2, ...l +ayy (1, L, . 1),
where i = 1,2; § = 9,1,2,...,k; k=0,1,2,...,n; [k - j]d is a diagonal matrix.

We proceed analogously in the solution of an m-order linear differen-

E
B
'%
%
. 2
5
§
.
%
}‘é
g
3

tial equation, applying m-fold integration using equality (14) or replacing by

%

SN

formula (15).

From (19) and (23) it is clear that the process of finding the solution
of a differential equation reduces to arithmetic operations with numerical matrices,
which makes thic method suitable for use in the computer solution of differential

equations of the indicated type, since standard programs are used to multiply

-8-
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and invert matrices.

Here the process of inverting the matrix B has an appreciable effect

st bk NG AR

on the accuracy of calculation. This must be done by the method indicated in [3],
i.e., by introducing a correction to the elements of the matrix B‘l.
Example. Let us consider the simplest differential equation
Y +2y=804x, x¢l0,1] (24)
with initial condition y(0) = 1, having the obvious solution y = 4x2 -
6x + 3 - 2e”2X, For the solution we use the operator A, with h = 0.2.

2
The computational formula for finding the solution of Eq.(24) has the

b AT 1 oM e R
P e L DY s SR 0L ] ARSI

3«p 5

O ¥

form

b lidul

L

) = {021/ A, + {1 1,...,1)) B!,

uhere £(x) = 8x" - 4x, B = I+ 0.4A), k=0,1,2,3,45.

3

b

NI
4

The soluticn matrix, obtained analytically, is written as

e

Lyklanai = {1, 0.6194, 0.3410, 0.2376, 0.3562, 0.8343];

obtained by the proposed methed it is written

(yd, =L1, 0.6205, 0.3408, 0.2365, 0.3552, 0.8331];

A

and by the Runge-Kutta method (with computational formula

il i s

‘ 1 1 ,
Ay, .~.-:.; (hy 5 Aky k), & =N (x5 0, Ry = b ("1 +gzhyd 'ykg) v kg = hf{x; + b gy 2k, — &)

[yajnx =1, 0.6139, 0.3369, 0.2334, 0.3512, 0,7246]. 3
The relative erfors at selected nodes are, respactively:
by the proposed method:

* 51 = 0.16%, 52 = 0.07%, 53 = 0.46%, 5, = 0.28%, 3g = 0.14%;

by the Runge-Kutta methed:

4

= 0.897%, o = 0.67%, Ny = 1.77%, Ty, ° 1.57Z,fﬂ5 = 13.2%.
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Setting £ = 2z in (13), we get

MR—-MG v i
_i’:_:.;.,.@ = 3100+ P MO0, 0+ P, Y M. (169

=0
Starting with relatilons (9) and (14), and theu completely repeating the proof of

iemma 4.1 from (1], we arrive at the following statement.

Lemma 3. In the completely indefinite case, for every finite domain G

of the complex plane there exists a constant 95 such that

<gg- (15)

¥ Q@9
j=h

Let us give without proof one more statement which describes the M(z)
at any fixed point z (Im z # 0) that correspund to all orthogonal operator distri-
bution functions T(A) of the positive-definite function F(t).

Theorem 2. In the completely indefinite case, for fixed z (Im z # 0)

the set of M(z)

1 -
M(2)=0() +— ;r"’(z)ur"’ @ (16)
H corresponding to all possible orthogonal distribution functioms 7().) of the function
31 F(t) ranges over the "operator circle" K, {1] with center

0wy = Y rip, | L-£+ Y @@
=0 ) ju0

and radii (l2ft and right) rngr...‘..j[‘"’(i), r"gl 1 _‘I‘"’(z), U ranges over all
jz~2 "o~z

ST i il

unitary operators in H.
Replacing z by & and £ by z in {13) and multiplying we get

TP IR MO ¥

M@E,® 2) + Ei 2) = 1M D, (5, 2) + Dy (8, I M D), an

0w AL ol

Doty = ~G—2Y PP, DG a=E~¢~2Y G20,
=0 =0
EGa=5+3-2F F@Q®. EGI=-G-2¥GAq®m. OO
j=l {=0

-G-
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